1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
| #include <cstring> #include <iostream>
#ifndef __CCE_KT_TEST__ #include "acl/acl.h" #else #include "tikicpulib.h" #endif #include "kernel_operator.h" #include "data_loader.h"
using namespace AscendC;
#ifdef __CCE_KT_TEST__ #define __aicore__ #else #define __aicore__ [aicore] #endif
constexpr int BUFFER_NUM = 2; constexpr int BLOCK_DIM = 16;
struct FlipTilingData { uint32_t height; uint32_t width; uint32_t channel; };
inline __aicore__ int32_t align32(int32_t n) { return ((n + 31) & ~31); } inline __aicore__ int32_t AlignDiv32(int32_t n) { return align32(n) / 32; }
#define CONVERT_TILING_DATA(tilingStruct, tilingDataPointer, tilingPointer) \ __ubuf__ tilingStruct* tilingDataPointer = \ reinterpret_cast<__ubuf__ tilingStruct*>( \ (__ubuf__ uint8_t*)(tilingPointer));
#ifdef __CCE_KT_TEST__ #define INIT_TILING_DATA(tilingStruct, tilingDataPointer, tilingPointer) \ CONVERT_TILING_DATA(tilingStruct, tilingDataPointer, tilingPointer); #else #define INIT_TILING_DATA(tilingStruct, tilingDataPointer, tilingPointer) \ __ubuf__ uint8_t* tilingUbPointer = (__ubuf__ uint8_t*)get_imm(0); \ copy_gm_to_ubuf(((__ubuf__ uint8_t*)(tilingUbPointer)), \ ((__gm__ uint8_t*)(tilingPointer)), 0, 1, \ AlignDiv32(sizeof(tilingStruct)), 0, 0); \ CONVERT_TILING_DATA(tilingStruct, tilingDataPointer, tilingUbPointer); \ pipe_barrier(PIPE_ALL); #endif
#define GET_TILING_DATA(tilingData, tilingPointer) \ INIT_TILING_DATA(FlipTilingData, tilingData, tilingPointer);
#define CHECK_ACL(x) \ do { \ aclError __ret = x; \ if (__ret != ACL_ERROR_NONE) { \ std::cerr << __FILE__ << ":" << __LINE__ << " aclError:" << __ret \ << std::endl; \ } \ } while (0);
class KernelFlip { public: __aicore__ inline KernelFlip() {} __aicore__ inline void Init(GM_ADDR input, GM_ADDR output, uint32_t _height, uint32_t _width, uint32_t _channel) { uint32_t blockNum = GetBlockNum(); uint32_t blockIdx = GetBlockIdx();
rowLength = _height / blockNum; startRowIdx = blockIdx * rowLength; if (startRowIdx + rowLength > _height) { rowLength = _height - startRowIdx; } width = _width; height = _height; channel = _channel; rowSize = width * channel; uint32_t bufferSize = align32(rowSize * sizeof(uint8_t));
inputGM.SetGlobalBuffer((__gm__ uint8_t*)input + startRowIdx * rowSize, rowLength * rowSize); outputGM.SetGlobalBuffer((__gm__ uint8_t*)output + startRowIdx * rowSize, rowLength * rowSize); pipe.InitBuffer(inQueue, BUFFER_NUM, bufferSize); pipe.InitBuffer(outQueue, BUFFER_NUM, bufferSize); }
__aicore__ inline void Process() { for (int32_t i = 0; i < rowLength; i++) { CopyIn(i); Compute(i); CopyOut(i); } }
private: __aicore__ inline void CopyIn(int32_t loop) { LocalTensor<uint8_t> local = inQueue.AllocTensor<uint8_t>(); DataCopy(local, inputGM[loop * rowSize], rowSize); inQueue.EnQue(local); }
__aicore__ inline void Compute(int32_t loop) { LocalTensor<uint8_t> inputLocal = inQueue.DeQue<uint8_t>(); LocalTensor<uint8_t> outputLocal = outQueue.AllocTensor<uint8_t>(); for (int32_t i = 0; i < width; i++) { for (int32_t c = 0; c < channel; c++) { outputLocal.SetValue( i * channel + c, inputLocal.GetValue((width - i - 1) * channel + c)); } } outQueue.EnQue<uint8_t>(outputLocal); inQueue.FreeTensor(inputLocal); }
__aicore__ inline void CopyOut(int32_t loop) { LocalTensor<uint8_t> local = outQueue.DeQue<uint8_t>(); DataCopy(outputGM[loop * rowSize], local, rowSize); outQueue.FreeTensor(local); }
private: TPipe pipe; TQue<QuePosition::VECIN, BUFFER_NUM> inQueue; TQue<QuePosition::VECOUT, BUFFER_NUM> outQueue; GlobalTensor<uint8_t> inputGM, outputGM; uint32_t startRowIdx, rowLength, rowSize, height, width, channel; };
extern "C" __global__ __aicore__ void flip(GM_ADDR input, GM_ADDR output, GM_ADDR tiling) { GET_TILING_DATA(tilingData, tiling); KernelFlip op; op.Init(input, output, tilingData->height, tilingData->width, tilingData->channel); op.Process(); }
#ifndef __CCE_KT_TEST__ void flip_do(uint32_t blockDim, void* l2ctrl, void* stream, uint8_t* input, uint8_t* output, uint8_t* tiling) { flip<<<blockDim, l2ctrl, stream>>>(input, output, tiling); } #endif
int32_t main(int32_t argc, char* argv[]) { if (argc != 2) { std::cerr << "usage: " << argv[0] << " path/to/datafile" << std::endl; exit(-1); }
uint32_t blockDim = BLOCK_DIM; uint32_t height, width, channel; uint8_t* data = readFile(argv[1], height, width, channel); const char* resultFile = std::string(argv[1]).append(".ret").c_str();
uint32_t dataSize = width * height * channel * sizeof(uint8_t); size_t inputByteSize = dataSize; size_t outputByteSize = dataSize; size_t tilingSize = sizeof(FlipTilingData);
uint8_t *inputHost, *outputHost, *tilingHost; uint32_t shape[]{height, width, channel};
#ifdef __CCE_KT_TEST__ inputHost = (uint8_t*)AscendC::GmAlloc(inputByteSize); outputHost = (uint8_t*)AscendC::GmAlloc(outputByteSize); tilingHost = (uint8_t*)AscendC::GmAlloc(tilingSize); memcpy(tilingHost, shape, tilingSize); memcpy(inputHost, data, dataSize);
AscendC::SetKernelMode(KernelMode::AIV_MODE); ICPU_RUN_KF(flip, blockDim, inputHost, outputHost, tilingHost);
writeFile(resultFile, height, width, channel, outputHost);
AscendC::GmFree((void*)inputHost); AscendC::GmFree((void*)outputHost); AscendC::GmFree((void*)tilingHost); #else CHECK_ACL(aclInit(nullptr)); aclrtContext context; int32_t deviceId = 0; CHECK_ACL(aclrtSetDevice(deviceId)); CHECK_ACL(aclrtCreateContext(&context, deviceId)); aclrtStream stream = nullptr; CHECK_ACL(aclrtCreateStream(&stream));
uint8_t *inputDevice, *outputDevice, *tilingDevice; CHECK_ACL(aclrtMallocHost((void**)(&tilingHost), tilingSize)); CHECK_ACL(aclrtMallocHost((void**)(&inputHost), inputByteSize)); CHECK_ACL(aclrtMallocHost((void**)(&outputHost), outputByteSize)); CHECK_ACL(aclrtMalloc((void**)&inputDevice, inputByteSize, ACL_MEM_MALLOC_HUGE_FIRST)); CHECK_ACL(aclrtMalloc((void**)&outputDevice, outputByteSize, ACL_MEM_MALLOC_HUGE_FIRST)); CHECK_ACL(aclrtMalloc((void**)&tilingDevice, tilingSize, ACL_MEM_MALLOC_HUGE_FIRST));
memcpy(tilingHost, shape, tilingSize); memcpy(inputHost, data, dataSize);
CHECK_ACL(aclrtMemcpy(inputDevice, inputByteSize, inputHost, inputByteSize, ACL_MEMCPY_HOST_TO_DEVICE)); CHECK_ACL(aclrtMemcpy(tilingDevice, tilingSize, tilingHost, tilingSize, ACL_MEMCPY_HOST_TO_DEVICE));
flip_do(blockDim, nullptr, stream, inputDevice, outputDevice, tilingDevice);
CHECK_ACL(aclrtSynchronizeStream(stream)); CHECK_ACL(aclrtMemcpy(outputHost, outputByteSize, outputDevice, outputByteSize, ACL_MEMCPY_DEVICE_TO_HOST)); writeFile(resultFile, height, width, channel, outputHost);
CHECK_ACL(aclrtFree(inputDevice)); CHECK_ACL(aclrtFree(outputDevice)); CHECK_ACL(aclrtFree(tilingDevice)); CHECK_ACL(aclrtFreeHost(inputHost)); CHECK_ACL(aclrtFreeHost(outputHost)); CHECK_ACL(aclrtFreeHost(tilingHost));
CHECK_ACL(aclrtDestroyStream(stream)); CHECK_ACL(aclrtDestroyContext(context)); CHECK_ACL(aclrtResetDevice(deviceId)); CHECK_ACL(aclFinalize()); #endif free(data); return 0; }
|